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In this supplementary document, we provide additional
materials to supplement our manuscript. In Sec. 1, we pro-
vide further implementation details of our proposed method
Vid2Avatar-Pro. Sec. 2 explains details of our experiment,
including dataset descriptions and the evaluation protocol.
Furthermore, in Sec. 3, we show additional qualitative com-
parisons to show our superior performance over prior art
and additional ablation studies of Vid2Avatar-Pro. Sec. 4
includes more qualitative results on the avatar creation from
in-the-wild videos. Finally, we discuss our limitations and
potential negative societal impacts in Sec. 5. The supple-
mentary video includes additional animation results.

1. Implementation Details
1.1. Normalized Conditioning Data Acquisition
Canonical Pose Definition Our canonical pose θcano char-
acterized by a 60-degree angle between the legs and an
additional 90 degrees of palm rotation compared to the stan-
dard T-pose of SMPL-X [19] as shown in the Fig. 1 of
the manuscript. This configuration, with increased space
between the legs, facilitates the refinement of poses when
initial estimates around the legs or feet are inaccurate. Ad-
ditionally, the rotated palms result in palm-facing canonical
maps, which enhance the reconstruction of hands, particu-
larly in capturing individual finger details.

SDF-based Canonical Template. To acquire high-quality
conditioning data for universal model training, we first re-
construct the canonical templates for all training subjects.
This static reconstruction is based on a single automatically
selected keyframe in which the human pose θ exhibits the
greatest similarity to our pre-defined canonical pose θcano.
Note that the human pose in the selected keyframe is not
identical to our canonical pose. Thus, we consider the space
in the keyframe as the deformed (posed) space.

Specifically, we represent the 3D shape of the clothed
human using an implicit signed-distance field (SDF) and
capture the appearance with a texture field within a prede-
fined canonical space with pose θ = θcano. Both the SDF
*Equal contribution †Equal advisory

and texture field are modeled with a neural network fs and fc
respectively, similar to [2, 29]. Our SDF network fs, which
models the geometry, takes the canonical point xc as input
and outputs the signed distance value s along with global
geometry features z of dimension 512. The texture network
fc, receives the canonical point xc, the points’ normals nd,
and the extracted 512-dimensional global geometry feature
vectors z extracted from the SDF network as input, and pre-
dicts the radiance value r. In particular, the points’ normals
nd are calculated in the deformed space as the spatial gra-
dient of the signed distance field fs w.r.t. the 3D position in
deformed space, following [2, 29, 32]. Note that unlike [2]
which aims to reconstruct dynamically moving humans, our
goal is to obtain a high-quality canonical textured template
that is consistent across different camera views and frames.
Thus, we do not inject human pose information into the
networks to keep consistency.

We use an inverse mapping approach, similar to [2], to
unwarp the ray samples into canonical space. This process
enables us to extract the signed distance values and radiance
values, which are then used to perform volume integration
to obtain the per-pixel color. This allows us to formulate
a training loop by comparing the volume-rendered pixel
color and the groundtruth image color, thereby updating the
weights of fs and fc.

We run MISE [14] to extract the canonical template
meshes from fs. Compared to templates reconstructed in
Li et al. [13], we achieve higher-quality templates with more
geometric details which enhance the performance of our
universal prior model.

SDF Network Architecture. The canonical shape network
fs is implemented as an MLP comprising 8 fully connected
layers. Each layer includes a weight normalization layer [23]
and a Softplus activation function. Each fully connected
layer consists of 256 neurons. For the input point, we apply
positional encoding with 6 frequency components to better
model high-frequency details [15]. The canonical texture
network fc is modeled as an MLP with 4 fully connected
layers, each of which has the same architecture as the geome-
try network layers, except that it uses the Sigmoid activation
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Figure 9. Universal Prior Model Architecture.

function for the last layer and ReLU [17] for the rest of the
layers. We initialize the shape network fs with a generic
SMPL-X body [19] by directly supervising fs with signed
distance loss that is calculated based on the 3D sample points
around the canonical SMPL-X surface.

Canonical Texture Unwrapping. We inherently already
obtain per-vertex colors of the canonical template mesh
through the texture field. However, we empirically find
that these per-vertex colors are limited by the template mesh
resolution and can often miss high-frequency texture de-
tails. In order to maintain continuous textures with minimal
texture information loss, we reformulate this problem as a
canonical texture unwrapping task. Specifically, we regard
the canonical texture map (with resolution 1024×2048) as
a variant of UV parametrization with invalid pixels outside
of the projected template mask Mc. We then conduct tra-
ditional UV texture unwrapping to obtain the colors on the
canonical texture map. Combined with the template mesh
and skeleton-based normalization strategy (cf . Sec. 3,1 in
manuscript), we obtain the normalized identity conditioning
data for all training subjects.

1.2. Universal Prior Model Architecture
Our universal prior model backbone is a U-Net, following [1,
12, 22]. The network architecture is depicted in Fig. 9, which
includes the encoder E and decoder D branches. The “Down”
block consists of a convolutional layer with a kernel size of 3
and stride of 2, followed by a leaky ReLU activation function.
The “Up” block is composed of a upsampling operation, two
duplicated convolutional layers with a kernel size of 3 and
stride of 1 followed by leaky ReLU activation functions.
The input to the upsampling block is upsampled by a factor
of 2 using bilinear interpolation. It then passes through

the convolutional layers. We also add a skip connection
for each upsampling block. The encoder branch takes the
concatenation of the normalized identity conditioning data,
i.e. Tc, and the posed position map as input, and generates
multi-scale feature maps encoded with identity and pose
information. The generated feature maps are then added to
the corresponding layer of the decoder branch to output the
pose-dependent Gaussian maps. The decoder is composed
of 8 “Up” blocks, which take a 4×4 map as input and output
Gaussian maps at a resolution of 1024×1024. Specifically,
the input texture and position map are at a resolution of
1024×1024 with 12 channels in total (incl. front and back
maps). In practice, we employ three separate U-Nets to
predict three Gaussian maps, which are stored with color
offsets (3 channels), position offsets (3 channels), and other
Gaussian attributes (8 channels), respectively, similar to [13].

1.3. Diffusion-based Texture Inpainting
Our model of choice is the Diffusion Transformer (DiT [20])
featuring 1.3B parameters and pre-trained on nearly 3B hu-
man images. We fine-tune the pre-trained model on a dataset
of 1000 unwrapped canonical texture maps (front and back).
To augment the training dataset and minimize the domain
gap between studio data and in-the-wild videos, we create
200 inpainting masks (visibility masks) for each subject
through rasterization of the pre-acquired studio canonical
templates using 2− 4 randomly positioned sparse cameras.
To tailor the DiT for the inpainting task, we incorporate a
ControlNet-like module [30] to inject spatial information
from the inpainting mask. We also integrate the MoVQ [31]
autoencoder, which achieves an 8x spatial downsampling
with a 4-channel latent space. Given the limited dataset,
we find the placement of ControlNet modulation within the
DiT crucial to avoid disrupting the original network weights.
During pre-training, we provide image-only embeddings via
CLIP [21] and DinoV2 [18] with ViT-L/14 architecture to
provide weak supervision and alignment towards target gen-
erations. The training process unfolds in two stages: initially
at a low resolution of 128× 128 for 50K iterations, followed
by a high resolution 1024× 1024 per view (front and back)
for 30K iterations. We use a learning rate of 1e-4 in all stages
and use the AdamW optimizer with beta values of [0.9, 0.98]
and an epsilon value of 1e− 6. We also use linear warmup
over the first 1000 learning steps starting from 1e− 6.

1.4. Preprocessing for In-the-Wild Personalization
Given the monocular in-the-wild video, we estimate the
shape and per-frame pose parameters by using an off-the-
shelf SMPL-X estimator [24]. This initial estimation is
often inaccurate with a wrong camera assumption (very large
focal length). Thus, we employ state-of-the-art 2D keypoint
predictor Sapiens [8] to estimate the 2D joint positions. We
formulate an offline optimization to refine the human shape
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Figure 10. Additional comparisons with ExAvatar. Compared to ExAvatar, our method creates higher-quality 3D human avatars with
finer-grained appearance details (e.g., clothing wrinkles and facial features), and generalizes better to out-of-distribution driving signals.

and pose estimates by minimizing the 2D keypoint projection
error. These 2D keypoints also serve as point prompts for
SAM-HQ [7] to extract the human segmentation masks.

Given the human shape/pose and foreground masks of
the monocular video, we apply a similar method as stated
in Sec. 1.1 to obtain the canonical template. Different from
reconstructing the canonical templates for the studio data, we
also optimize the estimated human shape/pose parameters
Θ jointly with fs and fc. The extracted template is then
normalized based on an average human skeleton scale to
attain the spatially aligned identity conditioning data. For
the preprocessing of in-the-wild videos, we try to follow
a similar strategy as done for studio data that is used for
training the universal prior model. This can largely help
to mitigate the inherent domain gap in conditioning data
between in-the-wild sequences and the high-quality multi-
view training data of the prior model. The preprocessing
for in-the-wild videos takes approximately 6 hours in total,
which is on a similar level as ExAvatar [16] (∼ 6-7 hours).

1.5. Training Details and Efficiency
For the training of our universal prior model, we use Adam
optimizer [9] with a learning rate of 5e−4. We train the
model with a batch size of 64 for 500k iterations, using 64
NVIDIA A100 GPUs. It takes about 5 days to converge. For
the personalized avatar fine-tuning stage, we use the same

optimizer and learning rate, and fine-tune the pre-trained
universal prior model using only 1 NVIDIA A100 GPU for
2k iterations. The fine-tuning stage takes about 10 minutes.
During inference, the rendering speed is about 20 fps for
960×540 resolution image rendering. Note that the current
implementation is research-only, and both the training and
testing efficiency can be further improved with codebase
optimization.

2. Evaluation Details
2.1. NeuMan Dataset
For the interpolation view synthesis comparisons on NeMan
dataset [6], we use the same estimated human shape, poses,
and segmentation masks as ExAvatar [16] to run all base-
line comparisons. We follow the official training and test-
ing splits to train/fine-tune on the monocular observations.
The quantitative results of HumanNeRF [27], InstantAvatar
[5] and GaussianAvatar [4] in Tab. 1 of the manuscript are
sourced from [4, 16].

2.2. MonoPerfCap Dataset
For the extrapolation view synthesis comparisons on
MonoPerfCap dataset [28], we curate 4 sequence clips
i.e., Helge outdoor, Nadia outdoor, Natalia outdoor, and
Weipeng outdoor, where in total 1490 frames (first 80%)
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Figure 11. Number of training IDs. The rendering quality consistently increases when the universal prior model is trained on more
identities/data. Especially, more appearance details can be recovered, e.g., the eyes and the pocket of the jeans, and our full model trained on
1000 subjects do not suffer from the problem caused by inaccurate opacity predictions, cf . the collar of the hoodie.

Table 4. Importance of inpainting. Our diffusion-based inpainting
module can effectively complete the textures that are missing from
the monocular observations (cf . Fig. 12).

Method PSNR ↑ SSIM ↑ LPIPS ↓
Ours w/o Inpainting 30.17 0.977 2.22
Ours 30.22 0.977 2.18

are used for training/fine-tuning and 373 frames (remaining
20%) are used for testing.

2.3. Self-Captured Videos
In addition to the publicly available datasets, we also capture
monocular in-the-wild videos using an iPhone to demon-
strate the superior performance of our method on in-the-wild
videos. In total, 18 participants have freely volunteered to
participate in this data collection with a signed consent form.
They have been duly informed about the intended use and
are recorded with daily motions. All captures are conducted
outdoors with both static and moving cameras. The avatars
created using the iPhone captures are already shown in Fig. 1
and Fig. 7 of the manuscript. The original captured videos
can be found in the supplementary video.

2.4. Evaluation Protocol
Following previous works [5, 16], for the evaluation on test-
ing frames of both NeuMan and MonoPerfCap datasets, we
fit SMPL-X parameters [19] of testing frames while freez-
ing all other parameters with the loss stated in the Eq. 7 of
the main paper. For baseline methods (incl. NeuMan [6],
Vid2Avatar [2], and ExAvatar [16]) that jointly model the
human and the background, we only compare the foreground
(i.e., human) rendering quality. This evaluation protocol is
slightly different from the one that was applied in ExAvatar
[16], where the estimated segmentation masks from SAM
[10] are first used to mask out the background in the ren-

w/o Inpainting

w/ Inpainting

w/o Inpainting

w/ Inpainting

Figure 12. Canonical texture inpainting. Our diffusion-based
inpainting module can effectively complete the textures that are
missing from the monocular observations.

dered images which include both the foreground and the
scene. That explains the mismatched quantitative results of



Figure 13. Additional Visual animation results of avatars created from monocular in-the-wild videos. The created 3D avatars can be
animated using novel human poses and demonstrate highly detailed appearance from arbitrary view points.

ExAvatar in our comparisons and its original report.

3. Additional Experimental Results

3.1. Animation Comparisons with ExAvatar

To further illustrate the superior 3D human avatars render-
ing quality of our method, we present additional qualitative
comparison results with ExAvatar [16] on out-of-distribution
human poses. ExAvatar is the state-of-the-art approach to
reconstructing animatable human avatars from monocular
videos and it is the method achieved highest quality among
all our baseline methods. As shown in Fig. 10, our method
creates higher-quality 3D human avatars with finer-grained
appearance details (e.g., clothing wrinkles and facial fea-
tures), and generalizes better to unseen novel motions.

3.2. Training Data

We show the qualitative ablation study on the number of
training identities in Fig. 11. We observe that the final ren-
dering quality consistently improves when the universal prior
model is trained on more identities/data. Especially, more
appearance details such as the eyes and the pocket can be
recovered. Our full model trained on 1000 subjects does
not suffer from the problem caused by inaccurate opacity
predictions, cf . the collar of the hoodie.

3.3. Diffusion-based Texture Inpainting
We provide more qualitative ablation studies on the effec-
tiveness of in Fig. 12. We also quantitatively measure the
improvement of our diffusion-based inpainting module, pre-
sented in Tab. 4. Specifically, we select the Nadia outdoor
sequence from MonoPerfCap dataset [28] in which the test
split contains most body regions that are invisible from the
training split. Fig. 12 and Tab. 4 show that our diffusion-
based canonical inpainting module improves our final results
both qualitatively and quantitatively.

4. Visualization
Fig. 13 presents additional animation results of avatars cre-
ated from monocular videos captured in under-controlled
environments. Vid2Avatar-Pro demonstrates its ability to
generalize across diverse identities and garment styles, yield-
ing highly realistic renderings of novel human poses and
view points.

5. Limitations and Societal Impact Discussion
Our method Vid2Avatar-Pro still relies on reasonable initial
human shape and pose estimates, and segmentation masks
as inputs. The robustness against imperfect segmentation
masks can be improved by incorporating the background
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Figure 14. Results on loose outfits. Our method generates plausi-
ble renderings for less challenging driving signals but fail to output
promising results for challenging human poses.

Reference Animations

Figure 15. Results on extreme lighting. The brightness of the
created human avatars is in its imperfection in case of a dark capture
environment.

modeling, similar to [11, 16].
The current training dataset for our universal prior model

lacks the capture of diverse facial expressions and dynamic
capture data of human subjects wearing loose garments.
Therefore, our method currently does not support animat-
able faces or highly realistic animations of human avatars
dressed in loose outfits. We show two examples from [3, 25]
in Fig. 14. Our method can generate plausible renderings for
less challenging driving signals but fails to output promising
results for challenging human poses. Future work could
incorporate more training data with rich human facial ex-
pressions and performance capture data of human subjects

dressed in free-flowing garments to realize more authentic
3D human avatars.

Additionally, Vid2Avatar-Pro assumes standard lighting
conditions and may not perform optimally in environments
with extreme lighting variations. For example, as shown in
Fig. 15, when the environment is dark, the brightness of the
created human avatars is also in its imperfection. We be-
lieve training a universal relightable prior model for clothed
humans is a promising future direction to address this issue.

The current efficiency bottleneck for the in-the-wild per-
sonalization lies in the preprocessing stage. The acceleration
strategies can be borrowed from [5, 26].

Vid2Avatar-Pro enables high-fidelity 3D digitization of
humans from monocular videos captured in uncontrolled
environments. This capability holds significant potential
to enhance a variety of downstream applications, includ-
ing those in the film and gaming industries, as well as vir-
tual communication within augmented and virtual reality
(AR/VR) environments. The ultimate output of Vid2Avatar-
Pro consists of photorealistic 3D human avatars, which can
be animated into novel poses based on corresponding driving
signals. However, this capability raises potential concerns
related to privacy breaches and the misuse of digital assets.
Specifically, there is a risk of creating digital avatars of in-
dividuals without their consent, followed by the possible
misappropriation of these avatars for unethical or dubious
purposes. When developing methods for avatar creation,
whether for research purposes or commercial products, it
is imperative to prioritize addressing these concerns. Our
goal is to facilitate the use of such technology in ways that
benefit society. However, it is important to acknowledge
that it is not possible to fully guarantee the prevention of
malicious applications. We advocate for a transparent and
comprehensive approach to developing these methodologies,
emphasizing the importance of openly discussing technical
details in research papers and making code and data accessi-
ble. This strategy is essential for fostering the development
of effective countermeasures that can mitigate the poten-
tial risks associated with unethical applications, rather than
pursuing undisclosed research endeavors.
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